
lI7’~ *o—A07o 300 COLORADO UNIV BOULDER DCPT OF COMPUTER SCIENCE F/G 9/2
— ‘USING DATA FLOW TOOLS IN SOFTWARE ENGINEERING’.(U)

MAR 79 I. J OSTERWEIL DAAG29—7e—G.ooIes
UNCLASSIFIED CU—CS—153—79 ARO—150714.6—M NL

i~~~I
to

AG 70 3 0 0

I

t I
END

1-79

‘I

i~ o / 6oc7ci, (0~1Y\

I!
UNIVERSITY OF COLORADO

$

DEPARTMENT OF COMPUTER SCIENCE

Technical Report

• DD Q,
— - ~

r

?~ 1 i r ~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~

~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _


I

USING DATA FLOW TOOLS
IN SOFTWAR E ENG INEERING

by

Leon Osterweil
Department of Computer Science

University of Colorado
Boulder , Colorado 80309

CU-CS—1 53-79 March, 1 979

INTERIM TECHNICAL REPORT
U.S. A~’1Y RESEARCH OFFICE

CONTRACT NO. DAAG29-78-G-0046

Approved for public release;
Distribution Unlimi ted

— ~~~~~~~~~~~~~~~ —~~~-.-~-—~~ —--— —~ -~~- • ---—-~~~~~ ~~~~~~~~~~ — —- ~ —~-—- -- - —-~~

THE FINDINGS IN THIS REPORT ARE NOT TO
BE CONSTRUED AS AN OFFICIAL DEPARTMENT
OF THE ARMY POSITION, UNLESS SO DESIG-

NATED BY OTHER AUTHORIZED DOCUMENTS.

A . •

~4LLi~
We acknowledge U.S. Army Research support
under contract no. DAAG 29-78-G-0046 and
Nationa l Science Foundation support under
grant no. MCS77-02194.

L _____________ ~~
.
~~~~ ~~~~~ 

—.



~tCU ~~i1Y ~~~~~~~~~~~~~~~~~ ~~ ~~~~ ~~~~.n ~~.. ~~~~~~~~~

REPORT DOCUMENTATION PAG E
.O V ’  ~~. ~. I :~~~“~~

-
~‘ ~~~ M~ ( P 1  .~1 5  L A Y  A~.O(. ~ UM~~~ I~

~~~ J-CS—153-79~ — . - — _________—_______

Y ’ Y ~~t (tdS..eu.I.)
•• Y V P L ~~ & P(Si~~fl

/~~~~ ~
‘Using Data Flow Tools in Software Engineering’,~ ______________

~~, ~~~~ ~~~
-

~~~~
. 

~~~~~ ~~~~
.. . ._

~~~~~~~~
_

~ P L R IO R M u~G osc . S(PORY ‘~uMO(S

A~JYHO R .) C(..~ Ta ACT QS ~ S*N T
‘~ 1f~

) /~~~~ ) . DA.AG29-78-G-O~46
~~on J./.~sterweil ~~R~~~~

MC577 Ø2I94 (.NSF)~
’ 

_ _ _ _

I Pt OSl&tN~ $ OSGA N I Z* 1 I O~4 ~~A&~I *P~O *0051  ~ * t Z A S*
AR ( a I IOR* UNIT  u~~~~~Rs

Dept. of Computer Science s 
I 

—

Univers ity of Colorado at Boulder . / / >  ,~ 
/

Bould er , Colorado 80309 __________________ ___________________________

I I  COI~ ’M O L L I N C . O~~~~IC~~ MAUI  A NO AOOR (SS ~.k POST OA Y ~[1 1) ~~r~~~~~79 

r . . .‘ 39 __________

I 4 U OP.I ORIN(. *GC$C ’V  NAMt  e .AO0RC~~ (1’ diUI~~
1( 1~ ’ 

(~~~~I~O!Iffi( . U’  )S ~IC I P$~~~ CI. A SS. (.1 Shl.~~•po•I)

Iater ti~ techatcal rq t. , 
- _________ ____

5. v~.C. A S%, ~~ICA T $ O N  OO* I.IGRAO$NG
SCN~~0~~LL

N A
T • OI~ ST ~~~~~~~~~~~~~~~ ( r h I .  P°”)

: ~~~~~~~~~~~~~~~~~~ ~ ~~~~~~~ L~ I ~~~~~~~~~ .. .

$7 O ISYN i BUI IO N S T A T E ~~f NT (ol h. •h .t ract .nt .,.d Ill . UI.c& 20. i~~JIl.i I Sn.~.K.po,I~

/ 9 ~
II SU P P L ( M L N~~AS’~ p .OT(S

i c s . .:. * 
~. . ‘ . . ~~~~~ ~~ ~~~ ~~

• 1 ’ . s ~~ ’ .V p~~~S~~ ~~~~~ .: . at t ~ .~tfl ’~r ‘ ..t~. r~~ze I

~ 50505 ~~~~~~~~ on •.v • r•• .l d. ii n.c.,aw ~ ~d ld.n’~ l,bl* , , . k n..o, ..,)

Testing; Verification ; Data Flow Analysis; Symbolic Execution;
Software Tools

20 A~~ST S A C’  (C.,n$ln•.. ~~, ,.. .,.. old. If n.c....vv ~~4 j d.ntJt~ ~~. ,,.,n t..,~

(No abstract, as such . Please see the introduction to the paper.)

j /~~~ ~~~Lf ~~~~

DO ~~~ 1473 ~~~~~~y I . I w  OY NOV IS IS 00S~) L 1 Y f  . .

= 
Sr . 0 7 .  A~~b IP . A T ,O N Uf 7 1 4 1 5  f A ,5~ (071on I).t. EnI.,s d)

~ 

- 

.
~~~


CONTENTS
Page

I. INTRODUCTION 1

II. CLASS ONE - DYNAMIC TESTING AND ANALYS IS TOOLS 2

III. CLASS TWO - ST*IC ANALYSIS TOOLS 8

IV. CLASS THREE - SYMBOLIC EXECUTION TOOLS 12

V. A STRATEGY FOR INTEGRATING TOOL CAPABILITIES 19

VI. SOFTWARE LIFECYCLE CONSIDERATIONS 23

VII. ACKNOWLEDGMENTS 27

REFERENCES 37

~

i

1

• — - . — ,-~~.-____ .

- L_.~~ . -.~~ .~~~~~~, —

~~~~~~~~~~ 
-



FIGURES
Figure Page

1. An example program 28

2. The program of Figure 1 , with probes for zero-divide and
subscript range errors inserted 30

3. The program of Figure 1 as it might be augmented by
assertions capturing the intent of the code 31 H

4. The program of Figure 1 as it might be augmented by
probes inserted by an assertion checking tool in response
to the assertions shown in Figure 3 33

5. The flowgraphs of the three procedures in the example Fprogram of Figure 1 34

6. Suggested flow of information and processing activities
in a software production project 35

7. A view of the software production process 36



I .  Int rod uct ior

Software engineerin g is o discipl i ne which has recently been

experienc i ng a period of considerable but unstructured growth. It
now shows signs of embark ing upon a phase of coordination and consoli-
dat i on. There rias been a larqe amount of work devoted to the devel-

opment of s~ ftware enq 1n~er ’1nq tools. This seei~s to  he parti cularl y

promising work , dS tools are vehic les for capturing software engineer-

ing concepts in a way which is tangible and useful to software practi

tioners. Through well—im plemented tools, desirable policies can he

promulgated and enforced throughout d project , in a way wh i ch i ncr ease s
the coord ination and efficiency of that project.

In the past , the quality of tools produced has been spotty .

Worse, however , the goals of most tools and the domains of their

efficacy have rarely been clearly enunciated . As a consequence, it

has been difficult for the community of software practitioners to

selec t tools appropriate for facilitating work on the specific tasks

comprising their software development activities . Thus specification

of the goa l s and doma i ns of eff i cac y of a tool should be an impor tan t

part of its documentation. The availability of suc h specifications
shoul d ena ble prac ti t i oners to i ntelli gently selec t and conf i gure a
set of tools into an environment capable of supporting specific soft-

ware production activities.

i~ In this paper we propose a generic configuration of tool capa-

bil ities. We categorize ma ny of the available tools into a few broad

classes , and show how these classes have properties which are nicely

complementary . We hypothesize that testing , documentation and yen-

fication are three of the most important software production activi-

ties and suggest that these activities can be nicely supported by

different configurations of representatives of these few tool classes.



- - .
~

II. ~~~~ ~~~~ - ~ yr~,t~~ic ~ ~~~~~ ano \r .~ik~.is .ro l~.

Tt:e :er;~’. d’. r~.tr 1~ te- ~t inq and o yn airi c ana lvsi js us~ d nere .
are intended to de- cni be -~o~ t of the systems known as exec ution ~on—

i tors , software ironi ton s and dynamic debuqqin Q systems ([f~al~ n) ] ,
[Fair 75] ,  [Stuc ~‘hi and ~~~~ ~ l)

I n .i~ ~o ric r~~ t i rr~ ~ s ’ r ~s , a cn ~prehensi ye recoro at a ~i n~~
execut ion a a • no ~ira, i tm i 1 t . Th i s rec ~‘d — — n~ e \ec Ut ion hi s a —

ry — — 1 s us ua I y a b t a 1 ned by 1 05 t rutnen t i nq the ‘~o once pro ~ rain w 1 t h

code whose ~lurpose is to captur e info rmatio n about the pro~ ress of

the exec u ti on. ~1os t sucn ~ys t ~~ i~ip I ant non 1 tori nq code a fter each

statement of the pro.~ran . This code captures such infor i rra~ ion as

the number of he s to e;~en a ed , the names of those van a —
hies whose v a lues had been altered by exe cut in g the statement , the
new va I ucs of ne~e v arnat ~l es , and t ne an t come of any tes ts  performed
by the statement. The execution hist ory is saved in a file so that

after the executi on term i nates it con he perused by the tester. This

perusal is usually f ac i l i t a ted  by the production of sunriary tables
and statistics such as statemen t exec ~,t~on frequency histograms , arid
variable evoluti on trees.

Despite the existence of such t ab les and stat istics , it is often
quite diffi cul t for a human tester to ae tec t. the source or even the

presence of errors i n  the execut i on .  Hence , ma ny dynamic test ing cy s -

tenis also moni tor each stateme nt execution c he ck 1nr l ~; for such error
conditions as divisi o n by :ero and out-of —bou nds array references.

The monitors implanted are usually programmed to automatically issue

error mness age~ in~iiediately up . n detecting such conditions in order to

avoid having t ne err ors  con cealed by the bulk of a lar ge execu ti on
history .

Some of this can be exemplif ied wi th the aid of a simple minded
program. Figure 1 shows a program whose purpose is to produce the

area s of rectan~iles and t r ia ng les having integer dimensions , when the
dimensions ar e given as inp ut. The program , a procedure called areas.

is divided in to two major functional portions. One function , implemen-

ted by procedure look ~.~p, returns the area of the triangle or rec tangle



-~
- . -

~ 
-~~~~ - - -  -~~~---~~~~ ,--. — ,~~~~ 

~~

--

~~~

- . -

by using a table I ookop. The t~5L) d ii~enis ioti s input for the ot mj e c t ,~re
used as the f i r s t two ind ices into the table, a three-d imens ional

array, A. If the area of a rectan g le i desired , the value I must he

input with the dimensions , a value 2 indicates the area of a tr ian ol e

is desired . A value 0 causes the look up loop to terminate. The value
1 or 2 is used as the third i ndexin g coord i nate into array, A.

Arra y ~\ i s in1 t~ali~ ed by the second functi onal portion ~f the

program implemented by the procedure nnt. This procedure init i al i zes

A in a somewhat indirect way , perhaps motivated by an interest in elim-

inating the need for m ultiplications.

In F ig ure 2 we see the same prog ram augmen ted by the co de neces-
sary to monitor for two types of errors -- div is ion by zero and out of
bounds array reference. This monitor -augmented program is typical of

the code which would be generated automatically by a straightforward

dynamic test tool . The monitors are positioned so as to ass ure that
any occurrence of either of the two errors wi l l be detected ininediately
before it would occur in the actual execution of the program. To a
human observer it is obvious that ma ny of these probes are redundant.
We shall be very much concerned with studying the forms of automated
analysis necessary to suppress such prooes.

Some systems ([Fair 75] , [Stuc 75]) addit ional ly al low the huma n
program tester to create his own monitors and direct their implantation
anywhere within the program.

The greatest power of these systems Is derived from the possibil-
ity of using them to determine whether a program execution is proceed-
ing as intended . The intent of the program is captured by sets of
assertions about the desired and correc t relation between values of
program variables. These assert ion s may he specified to be of local

or globa l v a l i d i t y . Tne dynamic test i rig system creates and places
monitors as necessary to determine whether the program is behaving In
accordance with asserted intent as execution proceeds.

Figure 3 shows how the example program might be annotated with
assertions . These assertions are designed to capture the intent ~f t he

program and expl ic i t ly state certain iion-t rivia l error conditions , to

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ . ~~ ~. —- ..- ---- ,—. 
~~ .~~~~~~~~~~~~~

— ——--



which t n i s pruqra~ ~eemn~ part i cu la r ly vu1 nerabl e . Fi qure shows

how the code ~ t Figure 1 might tie augmented in order to test dyna~-
ical ly for adherence to or v io lat ion  of the dssert i ons shown in
Fi gure 3. It should be clear f ro m this example tha t dynamic asser-
tion verification offers the p ossib i lity of very meaningful and

powerful test inn . Wi th  t h i s  technique , the tester can in  a couv t ’n-

lent nota t i o n  : aec i t  v t ne arec ’ i ~e des i red func t ional behav ior o~
the program (pres uma bly by drawing upon the program ’ s design and
requirements spec i f ica t ions ). Every execut ion is then tirelessly

m o n i t o r e d  for  a d h e r e n c e  to these specificat ions. This sort of

testing obvi ou sly can focus on the ma st meanin gfu l aspects of the

program far more shapr ly than the more mechanical approaches involv—

m b  m onit orin q only for vi o lati ons of certain standards such as zero

div is ion or array bounds v io la t i on .

The previous paragraphs should nake it clear that dynamic
testing syste n~ have strong error detect ion and exploration capabil-
ities . They CX Ce I at detecting errors during the execution of a
program , and a ls o at. tracing these errors to their sources. It
should be observed , however , that this information is obtained only

as a resul t of an execu tion occurr i ng i n response to actual program
input data . The generation of this input data is the responsibility

of the tester , and in many cases involves quite a si gnificant amount
of effort and insi ght into the program. In addition , as F igures  2
and 4 show , the instru mentat ion code required i n  order to do error
monitoring is often quite large , sometime s increasing both the size

and execution time of the subject program by several multiples .

Perhaps more important , however , is the fact that dynamic testing

systems are capable of examinin g only a sin gle execution of a program ,

and the results otitained are not appl icable to any other execution of
the program. Hence , the non-occurrence of errors in a given execu-
tion does not guarantee their absence in the program itsel f.

From the precedin g discussion it can be seen that dynamic
testing is a powerful technique for detecting the presence of errors .

Hence it is a powerful testing technique. Because its results are

applicable only to a sing l e exec u ti on , it cannot be used to effectivel y

-

~

.—-

~

- - 
.-~ ~~~~~~~~~~~~~~~~~~ -—



demonstrate the a:~ ~e’~cc of errors . Tnus , it is not an appropriate

technique for v e r t f i c a t i o n  ( i . e . ,  the process of snowing tha t a

program necessarily behaves as intended). Furthermore , although tne

assertions used for dynamic verification may themselves be valuable

documenta t i on of int en t , dynamic testing does not itself create

useful documen tation of the ma ture of the program itself. Fin aI ’~y

it is import ant to observe tna t the benefits of dynami c testin g can

only be derived as the result of heavy expenditures of machine storage

and execution time .

~~~~~ —~~~~~~~~~~~~~~~~~ •-- • _ _ _ _ _ _  -.
~ • ~~~~~~~~~

. - .- - -

~

— r —

III . Cl a s ’~ — ~~it i c A nt I ‘ - is Too I s

It’ . tne ~~~~; r ~ af stuti c orol’~sis too ls , w ’ incl u 2e a ll pr ’. . , :‘~ ::s

an d systems wn ich 1 n1~~er ’ re~~ l s about t no nature of a program t m ’) : ’ con-

sideration and ar - a vs i of a comnl ete m odel m~~ ~~~ a~ pec t of no
program. An lmnmm -ta n t cnoracteo i st ic a~ s~cn tOo l s 15 th~ t tne~ ti, ;

not neces sit ~ te \c n • t t o m m o tnr s~.n act ~ m’~r ’ ~~-.O1 -‘at im ~ er ra’~u l

applicable t. all p a s sinle exoc~ :ions.

A very stra 1 qht for ’w.,~rd exo ’ipi e af such a tao 1 is a synta x O f l ,m —

lv :er. ,‘~i t n tn is t oo l tne indi vid ua l St a tei:ert ~ of a trre~ ratn are

exa mined one at a t i n e . A t t re e r a of tn is s ca r it is p o ssible to

infer t na t the ; raqra;” is free o-’ sv ri t a ct tc error-s.

A more interes t ing exann ’le rs a tool s uc h as FACES [Rama ~~ or
RX V P [Mi l l 7A -,~n icn performs a von e t v of more so phi s t ica ted error
scans. These tools both , f a r exam p le , perfo rm a scan to determine
whether a ll procedure inv o cat iO ns are correctl y ma tched to the corres-

ponding def ini t ian s. The lengths of car ’’esprnii n g argument and pana-

me ter l i sts are comp ared , and the correspo ndin g individual parameters

and arguments are also comoared for typ e and aim ensiona lity agreement.

By comparing every procedure invocat ion w i th its corresponding defini-

tion in this way it is possi ole to assure t n a t the program is free of
any possibility of such a m ismatch error. Note that this analysis

requ i res no proqrar’: execution , yet produces a result applicabl e to all
possible execut ions. This sort of analysis , requiring a comparison of

combinations of statements , can also he used to demonstrate that a

program is free of su cn aefects as illegal type conversions , confus ion

of array dim er isiona lity , superf uous labe ls and missin g or uninvoked

procedures .

Data flow anal ysis is a still more sophist icated form of static

analysi; which is based j oa n cons idera t ion of sequences of events

occurring alon g tno various pat hs through a program. As such it is

ca pable of more power ful a nal yti c results than combinational scans

such as those just described . The)AVE system [Oste 76, Fosd 76] is

a good example of such a tool . Thi s system exam in es all paths or ig in-
ating from the start of a FORTRAN program and is capable of determining

___ ____ - •.- - - :ITTT ~~~~~~~~~~~ __________________

— 7 -

that no path , when executed , wi l l cause a reference to an un i niti al-
i zed var iable. DAVE also examines all paths originating from a varia-

ble definit ion and is capable of determining whether or not there is a

subsequent reference to the variah le. A definition not subsequently

referenced i s called a “dead” definition. Hence DAVE is also capable

of showi ng that a FORTRAN program is free of dead variabl e defin ’ tior~~.

Data flow analys i s i s based upon exam i na ti on of a flow graph
model of the subject program. The fl ow graph of every program unit is

created and its nodes are annotated wit h descriptions of the uses of
all variables at all nodes. Nodes representing procedure invocations
cannot be annotated in th is way immediately. Figure 5 shows the collec-
tion of three annotated fl owgraphs which would be created to represent

the variable usage by the statements of the exampl e program of Figure

1 . Procedures such as m i t and lookup which invoke no others are corn-

pletely annotated. For such procedures a data fl ow analyzer l ike DAVE
would determine the presence or absence of uninitialized variabl e
references and dead variable definitions . This can be done by using
data flow analysis algorithms such as LIVE and AVAIL [Hech 76] to effi-

ciently determine the usage patterns of the program variables along the
paths leading into or out of a program node.

The precise functioning of the algorithms can be stated as follows .
(*)Suppose ei ther of two events ref or def can happen to a program vari-

able , say x, at a program node. The algorithms determine the functions

LIVE: {program nodes} -+ {T,F} and AVAIL: {program nodes} -
~ {T,F} for

the nodes of the graph , where these functions are defi ned as follows :

If n is an arbitrary program node , then LIVE(n) = I (and we say

“x is live at n”) if and only if there exists a path p, from the node
n to another node n ’ such that x is ref at n ’ and x is not def at any
node of p between n and n ’ . Otherwise LIVE(n) = F.

‘

If n i s an a r b i t r a r y program node , then AVAIL(n) = T (and we say

*

The two events are usually given as ~~ and kill. For the sake of the
clarity of this example , we prefer to use ref and def.

______ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

x is ~va ml at ii i t and on 1 v i t I or each ~oi Ii p . I ,‘omim ho I r r o t ti .

start node s to n there i s a node ii ‘ he tweeii s and ii u~ Ii tha t x i

def at n ’ and x is riot ref at any rw m de hot weeim ii ’ and ii. Pt horw i - a
AVA IL(n) = F.

From those defi ii it ions , i t i s ee m t ho 1 1’ a van ah i e x 1’

LIVE at the program start node I hen an un in i t ia i i • ad no fereiw’ e a

x is possible a i r rig some pat h . Pn the e I her lii ti ,1 i t ’ \ i s not I I VI

at the start node , then x (‘0 ri :no be referenced hot ore do f i n 111 on for
any program execut ion. S Ufl 1 1 on y , suppose ii i s a n ode at. wh ich x

is def. Then i t x i s L• I V [, t here m in u s t be a pa t ti $ rem ii to a node at

which x is ret’. If x is not I IV I a t n , t hen n represents a dead dot 1—

nition of x .

From this it should he apparent tha t a LIVE analysi s for each

variabl e in a program is capable of deternii nin g the ;~resei1ct ’ or ,nbseii ce 1’
of these two error types in the program. (l ’ F e - d 7~1 shows tha t AVAI l
can be used to de term i ne i inpor ton t vo riat .i ens a rid s ~ hcn sos of thes e
errors .) This analys is of all variables can he carried out in p ar a l—

1 el by the algorithm s descr i bed in [Ilect i ib] mm ’ - inn time which can

ord inarily be counted on to he linea r in the number of graph nodes t O t .

usual program f lowqraphs.

The reader should verify th a t none of th e variab les loca l to
procedures m it. and loo ku~ , renresent ed by the gra phs i n F i qure 5 , ar e

l ive at the procedure start nodes. Moreover, t here are no local varia-
bles which are both def and not 1 i y e at any tiode . Henc e there are no
unini t ial ized variable re ference or dead def i iii t ion errors for those

variabl es i ti these procedures . It i s al so i mport ant however to observe

tha t i f , for example , the var i a h I o ‘‘ x k were iii i - .s p o l l ed i n s to t omen t 1 4

or if statemen t. 14 were om it t ed , t he n xk would he l ive at no de .1. Thi s

would correc t 1 y diagnose the no imsequen t un 1 Ti 1 t iou . ed re ference at
statement 17.

The anal ys is of the mn in procedure of I i qure ~ can he completed
after the ref and def usage of p1 , p.~ arid

~~
in s t ~ t emeni t. . ti is del et~iri n ed

ThIs is accomp 1 1 shed in the foil owi rig way by stud y i rig t he manner i n

which the pa ranne t ors to procedmire lee kup are used by 1 ookup . I i r’. t a
linear scan of th e tiOt ii- ~ t s for 1 eokup ‘ s nodes i s used to a scent iiii

—,

L- ________________ - -‘---—- —‘ ‘ - - - •—-‘ -•-‘-‘— ‘——— _•——‘ -•———
~
——

~- -

-~~~
_ _ _ -—-~~-~~~~~~~~

..—.

- 9 -

which parameters are def for l ooj~~p. Next the results of a L IVE scan
are exann i rmed . If a parameter pi is live at node 21 , then pi is ref

for procedure look.~~~ These annotations are then transferred posi-
tion by position from the parameter list in statement 21 to the argu-
ment list in statement 36. In this way , it is determi ned that p1 , p2 ,

and p3 are all ref at node 36 and none of these arguments is def.

Having done this , it is possible to complete the data flow analy-
sis of the main program , as described above.

In summary we have seen that static analysis can be used to deter-
mine the presence or absence of certain classes of errors and to produce
certain kinds of program documentation. Hence it is useful as an

adjunct to a testing procedure and offers weak verification capabil-
ities. It is also useful in supplying l imited forms of documentation
(e.g., the input/output behavior or a procedure ’s parameters and global
variab les). There is currently ongoing research which indicates that
static analysis , particularly data fl ow analysis , can be used to both
verify and test for wider classes of errors , as well as to produce
additional forms of documentation (e.g., [Tayl 79]).

Of particular interest to us here is the possibility of using
static data flow analysis to suppress certain of the probes generated

by dynami c assertion verification tools as part of a comprehensive test
procedure. As noted earlier , many of these probes generated by dynamic
test aid s are redundant. Their presence adds to the size and execution
time of a test run yet has no diagnostic value. Hence an automatic

procedure which removes them makes testing more efficient. It also

serves to focus attention on the importance of exercising the remaining

probes. Sometimes it is possibl e to remove all the probes generated by

an ass ertion or single error criterion. In this case , it has been
de facto demonstrated that the error being tested for cannot occur , and
this aspect of the program ’s behavior has been verif ied . This perspec-

tive shows how testing and verification activities can be coordinated
with each other.

For a specific example of this , let us exami ne the program in
FIgure 2. We will demonstrate how the three static analysis approaches

line-by-line , combinational and data flow — can remove progressively

- 1 0 -

more error probes. It is perhaps illuminating to observe that what
Is bei ng contemplated here is actually code optimization in the classi-

cal sense (e.g., see [Alle 76], [Scha 73]. We are atten nptinq to iden-

tify and remove redundant code in sonme cases and to move code to more

advantageous positions in other cases. Even the techniques employed

are directly derivative from optimization techniques.

A straightforward line-by-line scan of the program in Figure :‘

will suffice to remove several test probes. Clearly the inequality

tests in statements e2, e3, e6, and e9 mus t always be true. Hence no
more sophisticated analysis is needed to justify the removal of these

probes.

A combinationa l examination of contiguous sequences of tests
can elim inate other probes. For example , e4 and e7 contain identical

tests, without any intervening flow of contro l or test variable alter-
ation . Hence one of the tests can be removed . Similarly, either elO

or e13 can be removed , and ei ther el i or el4 can be removed . This
sort of probe removal is based upon analysis tha t is quite similar to

“peephole optimization ’ [Scha 73].

Additional probe removal can be justified by data flow analysis
arguments . Suppose the flow graph of the program in Figure 5 were

created and annotated as fol lows . Each node has a def l ist consist in g
of the range test occurring at that node . The ref list at a node con- —

sists of all tests referring to variables altered by a definition at
this node. Thus for example we would say that (1 . j

~- 20) is def

at e5 and eli , and that (1 j 20) is def at el and at e4. We

would also say that (1 — j - 20) and (1 ~- j - l ~
- 20) are ref at 9

and 11 . More details of this anno tati on scheme can be found i n
[Oste 77] and [Boll 79].

Based upon these conventions , we conclude that if a particular
test predicate , p, is both def and ayail at a particular node n,
then the test at node n is redundant. This analysis could be used
to remove the test probes at e4 and e7, as wel l as the probes at e19

and e22. It should be noted that this analysis is more powerfu l than

the combinational analysis outlined above , and thus capable of Justi-
fying the removal of the probes n amed earlier.

,1

L— __________ .
_ _

_ .~~~~ L_ ’--_ ~~‘ ,, A ’ ‘
~~~~~~~~~~~~~ 

— 
~~~~~~~~~~~~~~~ “ “ 

‘ ‘

~~~~
“

~~
‘ — -



-

— 1 1 —

Stat ic  analys is  can a lso  be used to j us t if y  the del et ion of
certain probes inserted in response to asser t ions .  Note that .  as-er-
tion Al in Hqure 3 expands to pro be statements P1 ,1 ; P1 ,.

~~; P1 .3;

P1 ,4; and P1 ,5. Assertion A4 also expands to 5 probes i n  the pro gram
in Figure 4. All of these probes could he avoided if a static scan

were used f irst to determine which ( i f  any ) o f the procedure par

meters were used as outputs (det ~~) by the procedure .

In this case static analys is can he used to remove all probes

resulting from an assert~ .. Hence ver i f i ca t ion  of the assert ion
can be achieved . On the other hand , we saw that ma ny , hut not a l l ,
of the subscript range checking prohe -~ can he removed by static analy-

sis. We shall shortly show tha t some additiona l probes Cdfl he removed

by using symbolic execution and constraint solving.

We have thus shown that there are signific ant assertion types

and error categories which can he completely verified through static

analysis. It seems important to determine which other assertion types p
and error categor ies give rise to probes which can be partially or

totally removed by static analysis. This is currently an open researc h

area . It is clea r, however , that assertioni s of functional equality

such as A2 and A3 are beyond easy verification by static analysis.

Furthermore the remova l of subscri pt range test probes involving funic-

tions of test variabl es (e.g., 1 - j-l 20 in eS) seems to require

either a set of spec ial case static analyses or a different more gen-

eral form of analys is. We discuss such a different type of analysis

next.

_____________________ ‘—- - ‘— ‘——- —k- —



-l ~~
-

IV. Class Three - Symbolic F x ec ut ian Tools

By symbolic execution , we mean the process of computing the

values of a program ’ s variables as functions which represent the

sequence of operations carried out as execution is traced along a

specific path through the proqram. If the path symbolically execu-

ted is a path from a procedure start node to aim output statem1s- ~’~
then the symbolic execution will show the functi on s by which a ll on

the output values are computed . The only unknowns in these func-

tions will be the input values (either parameters in the case of an

invoked procedure or read-in values when a main program is being sym-

bol ically executedl .

Thus for example suppose we symbolically execute the path 1
2, 32, 3, 4. 5, 6. 7. 8, 9, 10 , 11 . 10 , 11 i n the program shown in
Figure 1. At n ode 8 the value of i will be given by “1” , and the

value of A(l ,l ,l) will also be given by “1 ” . A fter node 10 has been
executed the first time , the value of j will be given by “2” , A(l ,?,l)
will be given by “1 + 1” . The next t ime node 10 is symbolical ly execu-

ted j will be “3” and A(l ,3 ,l ) will he ‘1 4- 1 + 1” . If the path
8,9,10 ,11, 10 is symbolically executed , then when node 8 is reached

the value of I will be an unknown and hence represented by “I” .

The value of A(i ,1 ,l) will likewise be represented by “I” . When node
10 is reached for the first time j will receive the value “2” ari d

A(i ,2,l) will receive the value ‘i + I” . Similarly, the next time node
10 is reached j wil l  receive the va l ue “3” and A(i ,3,l ) w ill receive

the value “i + j + i” .

A small number of symbolic execution tools has been built

[Howd 73], [K~rtq 76], [Clar 76]. These tools mechanize the creation of

the formulas and ma i ntai n i ncremen tal symbol table s. They employ
formula simplification heuristics i n-n an attempt to forestall the growth

in size of the generated formulas and foster recognition of the under-

lying functional relations. (It should be noted , however, that these

simpl ifiers do not take roundoff error into account arid , therefore ,

may ml~represent the actual function computed by a sequence of float-

ing-point computations). Hence a symbolic execution tool would report
the value of A (i , 3, 1) after two i terations of the loop at node 9 to

• be “3 *

________ ------a -~~ ~._~,a._ __,,,,I_____M__àI_I,_IlllE_IllIIIIuI=i_IIIIIIII_I_ulI__lIl~
lIIl



-13-

The fnregoing discussion strongly indicates that symbolic execu- —

tion is an excellent technique for documenting a program. Symbolic

traces provide documentation of the actual functioning of a program
along any specific path. In order to use symbolic execution as a

technique for testing and verification however , it is necessary to
augment the technique with a constraint solving capability .

In order to c lar i fy this , let us begin by observing tha t the

above descri bed functiona l behavior occurs only when the given path is

executed . In general , however , a given program can execute an (often
infinite ) variety of paths , depending upon the program ’s input values.

The conditions under which a given path is executed can often be deter-
mined by symbolic execution and constraint solution. Consider the
program gi ven in Fi gure 1 , as represen ted by the fl owgraph in Figure 5.

Each edge of the fl owgraph can be label l ed by a predicate describing

the condit ions under which the edge will be traversed . Thus for exam-

pie the edge (7,8) is labelled “h ~ 1” , the edge (9,10) is label l ed

~ 2” , (5,6) is labelled “h ~
- 20” and edge (11 ,10) is label l ed

“j s b” (note that node 11 is assumed to represent the loop incrementa-

tion and termination test operations ). Sequential contro l flow edges
such as (8,9) and (10,11) are labelled by the predicate “true” . Now
clearly a given path will be executed if and only if all of the predi-
cates attached to all of the path edges are satisfied. Unfortunately a

simple textual scan will express these constraints only in terms of the

variables wi thin the statenents. Thus the constraint will in general
not show their underlying interrel ations. If the constraints are ex-

pressed in terms of the formulas derived through symbolic execution of

the path , then a set of constraints all expressed in terms of the pro-

gram ’s input va l ues is obtained . Any solution of this set of constraints

is a set of input va l ues suffici ent to force execution of the given

path.

Thus , for example , the non-trivial constraints arising from the

path 3, 4, 5, 6, 7, 8, 9, 10 , 11 , 10 , 11 are :

h 20 from (5 ,6)
b - - 20 from ( 6,7)
h i from (7,8)
b ~ .‘ from (9,10)
3 ‘- b from (11 ,10)

A..



From tti~s we ~r n r  that t h i s  oUl wi l l  be executed if and only if
3 ‘- b 20 and 1 ~

- h ~P. Hence arcrument va l ues in these ranges ~iil

force execution -n of the specif ied path.

If we were to symbolically execute the path 1 , 2, 32 , 3, 4, 5,
6, 7, 8, 0 , 10 , 11 , 10 , 11 then the constraints would he:

1 - .~C) .0

These are all satisfied , hence we can infer tha t the path will

always be executed .

It is important to observe tha t some constraint systems are unsat-

isfiable, indicating that the path spawn i ng them is unexecutab le. We
shall make important use of this shortly. No less important is the

observation tha t the problem of determining a solution to an arbitrary

system of constraints is in genera l unsolvable. Hence we must not

expect that this potentially useful capability can be infallibly imple-

mented .

Exper imentation has indicated , however , that for an important
class of programs the constraints actually generated are quite tracti-

ble [Clar 76].

Testing and verification capabilities can be achieved by attempt-

in g to solve constraints embodying error conditions and statements of

in tent. Thus, for example, i f we create a pred icate constrai ni ng the
subscript i to be ‘i 1” at~~tatement 8, we are specifying an out-of-

bounds array reference error. This constraint is clearly i nconsistent

with the constraint “1 ~ 1” attached to edge (7,8). Hence it is impossi-

ble for the first array subscript at statement 8 to be below bounds.

Hence we have shown that one of the tests generated in figure 2 is super-

fl uous. A symbolic execution of a path from node 1 through node 8 will
similarly show that testing i again st 20 is superfl uous for that path.

The dynamic test for that error condition can he safely removed if it

Is shown that all paths through node 8 must create constraints incon-

sistent wi th “i 20.” Iii this example tha t is the case because proce-

dure m i t  does not alter the va l ue of h and mi t is always invoked wi th



—l

h = 20. These facts ca n be inferred from sta t ic  analys is .  Hence a
combination of s tat ic  analysis , symbolic execution and constraint
solution can be used to eliminate statement el of Figure 2. Similar
arguments can be used to eliminate statements e4, e7, e5, e8, elO ,
eli , el2 , el3 , el4 , el5 , el9 and e22.

Statements e8 and e15 are part icular ly interesting. It could
be argued that stat ic analysis is suff ic ient to eliminate these
subscri pt checking probes as well. The subscripts being checked

here, however , are funct ions of program variables. Surely static

analys is rules could be devised for each of these situations , but

other rules would have to be devised for other commo n occurrences.
The resul t would be an inelegant mass of special procedures.
A symbolic trace , on the other hand , eas i l y shows a l l  func t ional
relations , and readily expresses the needed range checking tests

directly in terms of the input va l ues. Thus the symbolic execution !
constraint solving approach provides an elegant technique which avoids
the need for the inelegant special-cases approach. H

It is important to note that we have analyticall y justifi ed the H
removal of virtually all subscript checking probes from the program
in Figure 2. In partic ular , all probes inserted to check the sub-
scripts of statements 8, 10 and 17 can be removed . Hence we have
verified that these statements correctly reference array A.

Although statement el6 is a probe for a different error (divi-
sion by zero) it should be apparent that the analytic technique just
described can be used to show that the test embodied in e16 is also
unnecessary . This error condition is expressed as the ccnstraint
“xk=o.” This will be i nconsistent with any constraint set arising
from symbolic execution of a path through node 14. Yet static analy-
sis will show tha t node 14 must always be executed prior to node el6.
Hence it is verified that the division in statement 18 is always well
defined .

Probes el7 , el8, e20 and e2l cannot be removed , however. In
— fact symbolic execution of a path suc h as 34, 35, 36, 21 , 22, 23, 24,

25 yIelds only the following constraints :*

* . hThe notation Qshould be read as “thea value taken as input, to
this path. ” Hence in this case~~ means “the third value read in. ”

~~~ - -- — ~~~~~~~~~ —~~~~ 
-
~~ ~~~~~~~~~~~~~~~~

-
~~~~~~~

- --



--
~ --~ - - — —- . -

-16-

~ 0 (from edge (35 ,36))

(iJ = 1 (from edge (24,25))

Thus clearly when statement 25 is encountered is constra i ned
to be 1 , but® and® are subject to no constraints. An out-of-bounds
subscript error at statement 25 could be simulated by any of the cce-

straints -kl , i~ 20 , j .- l , or j~ ?O . After symbolic execution these he-
comeO<l ,O>20,Q<l andQ>20. None of those is inconsistent wi th
the constraints generated by consideration of path edges. Hence a
solution such as

21

can clearly force execution of an array subscript reference error at
statement 25. Thus we see that the symbolic execution/constraint solv-
ing technique is a powerfu l testing aid. It should be noted tha t the

ATTEST system [Clar 16] implements most of the capabi l i t ies j ust de-
scri bed.

Perhaps the most important use of symbolic execution/constraint
solution is as a technique for verifying assertions of functional j .
relations between program variables . At the end of the previous section
it was noted that verification of assertions such as A2 , A3, A5 and A6
is beyond the power of the static analyzers which had been presented .
We saw that static analysis is quite adept at inferring all the possibl e
sequences of events which might arise during execution of a program ,
and that by comparing these wi th specifications of correct and incorrec t
sequences, testing and verification capabilities are obtained . When the
statements of correct behav ior are couched as predicates i nvolving pro-

gram variables , however, symbol ic execution/constraint solution is

most useful . This is not surprising, as symbolic execution is a tech-
nique for tracing and manipulating the functional relations between pro-

gram var iables .

We have already discussed the fact that the subscript references

at statements 25 and 27 may cause array bounds v iolations. This was de-

termined by using symbolic execution /constraint solution to demonstrate

that probes P5,1 and P6,1 are not inconsistent wi th path induced



constraints . Thus they canno t safely be removed and assertions A5

and A6 cannot be verified .

On the other hand , these techniques can help verify the correc -
ness of assertions A2 and A3 . By using symbolic execution for the
path 10,11 ,10 , we obtain the relation

A(i ,j,l ) = A ( i  ,j—l ,l ) + i

Viewing this as a recurrence relation whose initial condition is given by

A(i ,l,l) = i

we can obtain the analyt ic solution

A(i ,j,1) = j ~ i

from the theory of finite difference equations. This relation is
exactly the one asserted by A2. Hence this assertion is analytically
verified and need not be dynamicall y verified . Clearly this capability
rested heavily upon being able to draw on results from finite mathematics.
Cheatham has created a tool with impressive inferential capabilities of

this sort [Chea 78], although the probl em of determi ning the closed
form of a recurrence is in genera l intractible. Al so required here is
the ability to recognize when two formulas are equivalent. This pro-

bl em is likewise intractible in general .

Additional pitfalls of demonstrating functional equivalence are
demonstrated by assertion A3. Here we easily see that symbolic execu-
tion will establish that after statement 17

A(i ,j,2) = A(i ,j,l)/2.0

This is mathematically equivalent to the equation

A (i,j,2)

and is readily recognized as being equivalent. Because of the peculiar-
ities of fl oating point hardware, however, the two formulas

A(i ,j,l)/2.O and 0.5*A(i ,j,l) L
will often evaluate to different val ues . Hence the resul ts of symbolic
verification and dynamic verification may differ.

Despite these various limitations we are encouraged to believe

— 
~~~~~~~~~~~~~~~~ 

—

-- ____ s
-- ~~~~ -~~~~~~~~~ -~~~ - - — ~~~~~~ - -

that symbolic execution /constra i it solution can be used to yield
impressive documentation , testing and ver i f icat ion capab i l i t i es . rh~ps
these limitations can be put in better perspective by observin g that

symbolic execution and constraint solution are the basic techniques used

i n formal verification or so called “proo f of correc tness ” {Els p ~‘?i .
[Lond 75], [Ha’~ 76]. In forma l yen f icat ion the intent o f ~i ~~~~~~
must be captured totally by assertions imbedded according to tfle dic~~i t es

of a criterion such as the Floyd Method of Inductive Assertions [Floy 67].

The correctness verification is established by sym bolically executing
all code sequences lying between consecutive assertions and showing that

the results obtained are consistent with the bounding assertions. The

consistency demonstration is generally attempted by u s i n g predicate c~lcu-

lus theorem provers rather than constraint solvers as discussed here. It H

is cruc ial to observe , however, that these theoremii provers are subjec t to

the same theoretical limi tations discussed earlier. The undec i dabli lity

of the Fi rst Order Predi cate Calculus ma kes it impossib le to be sure
whether a theorem is true or false. Hence we cannot be guaranteed of an

answer to the question of whether a symbolic execution will yield results

consistent with its bounding assertions. Fur thermore the symbol i c execu-
tion may make simplifications and transformations of real formulas which

do not recreate the functioning of floating point hardware . These and

sim ilar l imitations of formal verification have long been acknowl edged .

Yet still formal verification is rightly regarded as a useful technique

capable of increasing one ’s con fidence in the functional soundness of

a program. This is exactly the sense in which the symbolic execution!

constraint solution technique just discussed should be considered worth-

while .

In fact , this technique is of more worth to a practitioner than
formal verification , because of its fl exibility . As already observed ,

formal verification requires a complete , exhaustive statement of a
program ’ s intent. The technique j ust described focuses on attempting
to j u s t i f y or disprove the validity of individual assertions. This
gives the practitioner the ability to probe various individual aspects
of his program as he may desire . From this perspective we view formal
verification as the logical , orderly culmination of a process of verify-
ing progressively more complete assertion sets. This culmination is rarely

reached due to its prohibitive costs.

---~~~

-19-

V. A Strategy for Integrating Tool Capabilities

In this section we propose some ways in which the preceding

classes of tools can be combined to address important software imple-

mentation objectives. It seems that in creating software the overriding
goal is to create a product which demonstrably meets its current objec-

tives and shows promise of bein~ adaptable to meet forseeable ch~inqe

in the objectives. Much researc h and experimentation has been devoted

to studying how to achieve this goal , and much is yet to be understood.

From this past work , however , certain basic needs can be clearly dis-
cussed .

Perhaps the foremost lesson learned i s that software produc ti on ,
especially on a multi -year , multi-person scale, is a costly, complex
activity requiring effective management [Brow 78], [Blac 77]. Such
effective management can only be achieved if there is sufficient visi-
bi lity into the activity . This visibility enables managers and pro-
granuiers alike to decide whether the project is on the way to achiev-

ing its goals , and if not what remedial action should be taken . Hence

it seems that chief among the capabilities essential in guiding a soft-

ware project to success are visibility into its status and ability to
determi ne whether the behavior of the evolving product is deviating
from the intended behavior. Visibility is provided by adequate doc-

umentation made centrally availabl e by project personnel to each other

and to managemen t. Clearly it is our thesis that this process can be

substant ially facilitated by tools. Determining whether or not a soft-

ware product is meeting its objective is clearly the goal of the test-

ing and verification processes which, as the preceding sections suggest ,
can be viewed as closely coord i nated activities. Here too , our thesis
is that tools can be of significant help. Moreover , as the preced i ng
sections suggest, documenta tion can be viewed at least in part as an

activity which is preparatory to testing and verification.

A possibl e diagram of this view of the software production

activity is shown in Figure 6. From this diagram it is clear that the

activity should be greatly facilitated by automated aids to documenta-

tion , testin g and verification. The preceding sections have provided

a basis for seeing how such automated aids can be fashioned from a

-

-2(1-

coal i t ion of s ta t i c analysis , symbolic execution and dynamic textinq

aids. We now propose some details.

A complete set of program documentation must ful ly describe tne
structure and functioning of the program. Clearly such a set must
describe a wide variety of aspects of the program. At present it seems

that certain of these i tems of descript ion must inevitably be suppl~ ed

by humans. The previous sections of the paper have shown , however ,

tha t some documentation can be generated by tools. This documentation

is , moreover , probably more reliably and cheaply done by such tools.

In addition , if some documentation is done by tools , the remaining

documentation is likely to be done more carefully by humans , thereby

suggesting the possibility of greater quality and reliability .

Earlier sections of this paper suggest that static analysis tools
should be used first to create such documentation as cross reference
tables , variabl e e,olution trees , and input/output descriptions of
individual variables and procedures . Symbolic execution tools should
be used next to create descriptions of the functional effects of execut-
in g various paths through the code. With constraint solution , a com-
plete in put/output characterization of the code can be obtained .

Performance characteristics can be measured and documented with the

aid of a dynam ic testing tool . It is proposed that all this documenta-

tion be stored i n a cen tral data base , formi ng a skel eton of the corn-
plete documentation. Editors and interactive systems might be used to

gather from humans such things as text descriptions of variables and

procedures.

Each of the three tool classes produces a different kind of docu-
mentation. The types of documentation are only loosely related , hence
the order of application of the tools can be dictated by the importance
of each to the particular project. It is impo rtant to be aware , however ,
that static analysis is relatively inexpensi ve , symbolic execution is
relatively expensive , constraint solution is usua lly quite expensive ,
and dynamic testing can be quite expensive if extensive elaborate test
runs are done .

In a tool-assisted testing act ivi ty , the order of application of

~

_ ~~~~~~~~~~~~~~~~ __________________________ _______________________ - _ — •

- -

-?l-

the tools is important. We have seen that tools can be used to focu—

the testing effort on paths dnd situati ons which appear to be more
error prone . This is done by elimination of probes which were created
to test for con~ion progranhiiing errors and for adherence to explicit
assertions. We saw tha t many probes can be removed by application of

progressively stronger (and more cost ly) s ta t ic analysis. Some r&sil.ti n-

log probes may be removed as a result of symbolic execution/constraint

solution . We saw that these probes are likely to be the more substan-

ti ve ones , monitoring for adherence to asserted functional intent.

Their remova l constitutes significant verification , but it can be

expected tha t the cost of this will be relatively high. Hence symbolic

execution should probably be employed cautiously or not at all as a

test ~~~ :1
Finally a dynamic test tool should be used to gather definite

Information about the existence and sources of error in the program.
As already noted , testing can only show the presence of error in a test
case, and even a simple program may have an infinite number of possible
test cases . Hence the tool aid ed procedure just outl i ned has added
importance in tha t it helps suggest test cases - namely those designed

to exerc ise probes not analytically removed .

We have seen that testing and verification can be closely related

activit ies . It is important to remember , however , that they do differ ,

most noticeably in their goals and placen ient in the software production

process. Testing is the process of looking for errors . It should be
v iewed as an activity which occurs frequently during code production.

Verification is the process of demonstrating the absence of errors . As

such it should not be undertaken until and unless testing has failed to

uncover errors. Thus it is a less frequent , more critical process ,

usually warran ting greater expense and thoroughness. Our earlier dis-

cuss ion has shown spec i fic ways in which verification results can be

obtained as outqrowths of testin g activities . We have also seen , how-

ever, tha t sornie activities provide good verification results but are

likely to be relatively costly. Because verification is a less frequent ,

more critical ac tivity the extra cost may well be warranted .

A verification activity should start out like the testing act ivity

— --. —-- - -.-- L.~-._-—-.- - - -~
— -—- --- - .— ‘-—--

~--‘
--—- -

~~~
-_ _  

~ - ~~~~ . — - - —-—~~~~.-~-.-.~-



I

H’:’-

just described . The i rs I -; t t’p s t o suppress error t e- . t i og pm’ahe - - and
probes resul t ing t roum assert ions . St ,it ic anal ys 1- . can be used It)

some probes, hut the most s it in i Ii. ant probes probably ca n be removed irni v

by symbolic execut ion. Ver i f i ca t  lomi i s  achiev ed on an asse r t  iofl —h \ a. -o’r-

t ion basis only when dli probes genera l ed by a imi ul t ’ .~-~se rt ion h,Rt’
been removed . in t ht s wOy S I ranger mna rm ’ camp ) t ’t e ye n I i at ian I’

obta ined  incrememi ta l l y  at ~rt’ater to ,t ,iiid et fart . (‘oi’~i ’le t t ’ t~’ rna l \ - t ’~-

fication can be at tempted if des red as the ~ulm ina t ion of th i ~ rot e-.-~ -

A fina l word shaul d be -~a id about the need for ba th yen Ii a Ii an

and ti’s t i nq . I t  has bt ’en observed that t es Ii nq anna I dt ’nstn- , t r-t e the

absence of errors . Hem: e yen i t 1 ca t i on s hon 1(1 be attempt ed . We have

also observed tha t t he  yen t i  c at  ion process h~s i t s  own m’ sks . 1 he

nmo s I importan t. 1’) sk i - , t ha I an .m ~er I. ion ver u i  (0 l ion a I temp t nma~v end
I nconc 1 us i ye] y because of the fa 1 1 nrc to determ ine t he t o ns  i st em v

of constraints or t tic’ truth of ~i theorem . As a I ready noted , t hi
does not necessari ly s igni fy the fal -~~ ty of t he  asser t i on , j ust t ha t
the yen f ica Lion o t t  omp t ended i nconcl us i vel y . Anot her i mpart ant risk

Is tha t the yen f ica I ion may be s ucc ess ful but  rely i mup i ic itl y upon
false assumpt ions abo ut  the semanti -~ of language c on s t ruc t s . Ac an
example of this , we SOW that symbo l ic executor s qenera 11 y make incorrec t

- 

- si nip ii fyi nq ass ump Ii ans about the fu~c t ion i nq of €1 oat i og ~ O lil t ha ~ —

ward . As a result even a camp I e I e formal ver i f i c a t ion  of prograni c 0 rrt’c t —

ness may not compi e tel y rule out the p os s i b i l i t y  at  an e\ec o t ion — tim e

error. Hence i t se -rn -, t ha t hat h I e sI I ug a mid ver i f i cat in ii should be

— considered techri 1 ques for no 1 -. int l the confidence at project personnel

In the software product. ach 1’. capable of bol sterin g cant 1 dence
• in I ts own way, and neither s haul d he em ployed to the e~c 1 us ion at I he

other . 

_ _ _ _



• —.-.

~~~~~~

- - • I
—:)

~~
—

V I. Softwa re Li fecycle Con sider ation s

The prev ious sec tions of t h i s paper have es t a b l i shed the imupar-

tance of having assert ions to represent the intent of a program to be

documented , tested and veri f ied . Wh i le the importance of the ds- ,eni lori s
has been es t a b l ished , the so urce of I he a ss e r t io n s h~s not been Ji -~~~~ t ’,1.
In this sect i on we propose ‘ iat the ass e r t inn s i’easai ia t) l•V and nia~ u’S’ 1 1 ~
or I g i nate in the earl y requ 1 reme it a nd des i gn phases of t he --o two ri’
produc t ion process . We also propose that the I est.i nq. yen fi cat i omi and

documentation techniques already described are at leas t partiall y appli-

cable to these earlier phases .

Figure 7 is a diagranuiatic view of how the software product ion

and maintenance process m inht he divided into phases. It is an adapta-

tion of the “waterfa ll chart’ [Reif 75] which has become widely accepted
as a model of those activitie s . The prim liary goal of these models is to
divide software production and muainten ance into definable phases and
moni toning points. This d iv is ion should lead to better defined criteria

for judging the quality and co mu pletemiess of work in progress. We shall

show how this process also produces assertions and how tools can a s sist

in the process.

The requirements definition phase of this process is the phase
durin g which the basic need s of the software projec t are enunciated .
These needs are to be expressed as precisely an d comp le tely as possible,
but in such a manner as to not suggest on bias an alqori thm uic solution.

One of the m ost effective ways to do this is to spec i fy the required

functional and performance characteristics of the proposed program . Such

a specification need not and should not suggest how the function s are
to be computed . These specific ati ons should , fromii the perspective of

this paper , be viewed as assert ions ot the int .em it . which the even tual

program must satisfy . Hence the eventua l code assertions must be direc t-
ly traceable back to these on iqi m -m al sta tements of intent. We shall ex-
plore potential mechanisms for doing this shortly.

The preliminary design phase is characterized by the process of
exploring possible strategies for building an alqon ithm n ic solution

which sat is f ies the requirement s spec i f i ca t ion . During th is phase pro-

cess ing modules and data abs t rac t ions are defined , and algorithmi c

~

• • .-

~

-
-

. -

~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~• ~~~~~~~~~~~~~~~ ~~~ -~~ - —



— •  -~~~~

-‘24 -

processes

ally hei rarch i cal , showinq, when complete , how the princ i pal components

of the algorithmic solution are decomposed into successively more

deta iled spec i fications of data and processing. In practice , suc h a
decomposition process invariably leads to greaten understanding of the

problem and consequent c h a n g e s  in requirements. Hence the requirements
and preliminary desi gn act i v i t ies should he viewed as i terative and

intertwined . Together they should be considered to he the process of
gaining understanding of the nature of the problem , an-md agreement about
an acceptable approach to its solution.

From the point of view of this paper , preliminary design is impor-
tant because it specifies the required functiona l behavior (assertions)
which apply to the various components of the solution. Hence this phase
begins the process of attaching successively detailed assertions to

successively smaller algorithmic units. This process should terminate
with the construc tion of code around very detailed assertions.

The deta iled design phase is the phase during which the outline of

the solution ’ established during preliminary design , is elaborated down

to the level of actual specifications for code. Detailed design should

not be viewed as merely an extension of the preliminary design activity .

At the start of detailed design -it is necessary for the desi gners to re-
orient their thinking fro m a problem understanding orientation to a

software construction orientation. This is a crucial phase of the soft.-

ware produc tion process , dur ing which the solution elements proposed

during preliminary design must be grouped and reorganized into modules

and data abstrac tions [Pan’n 72] [Lisk 75]. This reorganization should

be guided by the desire to clearly capture independent solution concepts

in code, and to use standard interfaces to conceal the details of their

impl ementation. The module specifications are statements of the func-

tiona l behav ior required in order to realize the various design concepts.

Hence they are asser tions. The hiera rchical decom iiposit ions of the high

l evel modular assertions analogously become assertions specifying the

behavior of the submodules comprising higher l evel modules. The de-

tailed design process term i nates wi th the creation of spec i fications

(assertions) such as those shown in Figure 3. which are so detailed

tha t they can be met with just a few lines of code.

S _____________

A ~~~~~~~~~~ k~ —•- - • - -•- -~~ •—~~.~~__•4 __~._ S • - • ~ 
__~~-



- S  - - 

7

As already noted , one at the primary reasomi-. Ion fal 1 ,iwi nq iii - .

phased approach to software construct ion is that it a f f o rds ahviou’-

opportun i ti es far  observin g and eva 1 ua Ii nq progress at i nit ermed lo t e

stages. Extensive reviews are conducted at the conclusion of each pha- .e.

One of the primnary goals of such review is  to es tab l i sh  wheth e r an ni at

the work compi eted dun i mi tha t phase meet s the a hj  ec t i  yes as emit , I,, iat i’d

at the conc 1 us i on of the prev aus phase. Flenc e the review can qu it  e
reasonably he viewed as a tes t in g  and yen f ic at  ian procedure , u~ i no the

output of the previous phase as the statement of int ent.

These rev i ews arc’ I nvor i ably h~’ sed upon dot: umnen t a t i on a nid

analysis done primarily by humans . It is our ca nt ention tha t t he~ c an

be heavily supported by tools and techniques l ike thos e described earl icr

in this paper. In order to do t h is  t he requi remiient s amid des i qm i spec i l l  ca—

ti on-m s must be -; to ted i n terms of a rigorous formmna ii sm . Some cii ,: h fornia 1 -

isms have already been devised . Pseudo -code languages and desi gn repre-
sentation languages such as CLII [Lisk 77 ] arc c’xamnpl cc a t  n’iqorous

fonina li sms for expre’; sing detail i’d des i tin. Clearl y they can be pa,’sed

and subjected to certa in types at semnant Ic anal ys is . V i nt u~ l ly a ll

forms of static anal y sis and symbolic exes~’ut ion can he carried out

on them . Hence documentat ion can he automatical ly produced and somne yen -

fication automaticall y obta i ned . If the detailed desiqn and prelim n i nary
design are both co m plete and rigorous enough it is possibl e to a bt a i n

formal verifi cation that the det ailed design meets i t s  prelimina ry tie-

sign objectives.

It is perhaps more curpri -; i rig to note that such capah i l i t  1 es can

reasonably be expec ted for requ 1 ,‘ement s and preliminary design spec i i i  ca—

tions. Here again the prerequi site is  rigor in the sp ec i f i c a t i on . A
number of rigorous spec i fi cat Ion muethodol ogles have been proposed
(e.g., SAMM [Step 781. SAIIT [~~s’. 7~’ 1. PSL/PSA [Tei& • ‘ ?  l’l . All seem

to be based upon a graphical represent a t i  on of the requirement s and • on.

preliminary design.

The SREM met baJa logy [41t a ‘7 ]  1 s the mast im i t eres Ii nq a- . it 1 ha mid —

some 1 ~ SU~)~O rt i’d 
N y I he I~S L 

/ Rl VS fani ii y of I on 1 -, I ~e 1 1 1 . F~SI i ‘. a 1 an —
quaqe which is used to capt nrc a rt’qu i remen I s/ prel inn nor tie-. ign spec i ll ca —

t ion and recast it in to a set at objects and rd a l i ons  st ,i,’ed in a cent t’al —



S — _

-26-

ized data base. The contents of the data base can be (and is) looked
upon as a collection of annotated graphs , modelling the probl em and its
proposed solution. The REVS system of analytic tools exami nes the
data base and produces documentation , analysis and limited forms of
verification. Each processing element in the design has as part of
its specification its input/output behavior , and a functional descrip-
tion which may be stated as an algorithmic graph sturcture. Hence
input/output behavior can be automatically documented and verified
for consistency . Symbolic execution traces can be created as documen-
tation and for the purposes of verification. It is important to note
that since SREM captures both the requirements and preliminary design
in a natura l intertwined fashion , verification of internal consistency
is tantamount to a verification that preliminary design meets require-
ments.

We finally are able to see where the program assertions originate .
The functional descriptions attached to the various processsing elements
of an RSL-like specification are the initial program assertions . If the
specification technique represents the hierarchical decomposition of

these elements, then at each decomposition l evel functional description
is attached to the processing elements. As these descriptions become
more algorithmic and rigorous, the possibility of rigorous and automatic
verification increases. By the beginning of detailed design they have
evolved into rigorous modul e specifications , and are certainly a Suit-
abl e basis for the automatic verification approaches describe-i earlier.

Some of the documentation , verification and testing techniques
described earlier in connection with code analysis have been applied to
requirements and design representations. It remains to be demonstrated

that the methodology outl i ned in ~~Ct~Ofl V and its implementation by
the tools proposed can be sutstantia lly appl ied equally well to require-
ments and design. This would’ establish the feasibility of a sing le analy-
tic methodology and tool configuration for application a . ~.ll phases of
the software production process.

- A 

_ ~~~~~~~~~~ 

~~~~~~~~~~ .- -  - -
~~~~ —- 

S - - - -- 
—S



_ .~ - _
~~~~

_ .— -_ S~~—_ -- ~~~~ ~~~~~~~~~~~~~~~~~~ S _ . . _

~)7

VII. Acknowl edgments

The author wishes to thank the National Science F ’Andation i and
the U. S. Arn~ Research Office for their support of the research act -mv-
ities from which muost of the ideas expressed here have originated .
Much va l uable insight was a lso ga i ned while the author was on leave of
absence from the University of Colorado Department of Comiiputer Science.

and employed by the Space and Military Applications Division of Boeing
Computer Services Company . The ideas expressed here have been shaped
by stimulating conversations with Les Wade , John Brown , Leoni Stucki ,

Loni Clarke , Bill Howden , Bill Riddle , Dick Taylor , Larry Peters and
many others . Finally, the author wishes to thank Harriet Ortiz ,
Mildred Farnsworth a mid Ar) ene Hunter tar thei r oH I gin -mg wil l i nqness to
type the manuscript and editors Steve Muchnick ar-md Neil Jones for their
patience.

‘I
- __ _ _ _ _ _ _ _ _ S - -—-—---~~~~~ - - -~~~~~

—

PROCEDURE AREAS ;
2 DECLAR E~~EAL A(20,20,2), INTEGER P1 , P2, P3:
3 PROCE~U~~ INIT (H. B);

-

4 DECLARE INTEGER H, B , I , J , K , REAL XK;
5 IrH 20 THEN ERROR STOP;
6 TrB~~~20l~Ht~~~~~~~~~ lT;
7 ~~ FOR I = rYo ~8 A1T, 1 . l) I ;
9 OO FORJ 2TO B;
10 ACI, J , 1)

~ A(I , J— l 1) + I;
11 END;
12 END;
13 K~~~2;14 XK = 2.0;
15 DO FOR I = 1 TO H;
16 ~ö FOR J = 1 TO B;
17 A(T, J , K)~~~A (I, J, K-i) / XK;
18 END;
19 END~~~20 END;
21 PROCEDURE LOOKUP (‘I, J , K);
22 DECLARE INTEGER I , J, K;
23 CASE;
24,25 = ~ PRINT “AREA OF ” 1 3 “RECTANGLE IS” A(I 3 , K);26 ,27 K = 2: P~T~1t “AREA OF” I, 3 “TRIANGLE IS” A (I , 3 . K);
28,29 ELSE: PI~ThY”PARAMETER ERROR : K = “ K;
30 END;
31
32 CALL INIT (2 0,20);
33 EOOP FOREVER;
34 READ P1 , P2, P3;
35 IF P3 = 0 THEN STOP ;
36 —

ELSE ~A[t LOOKUP (P1 , P2, P3);37 END ;
38 END,

FIGURE 1: An example program

I PROCEDURE AREA S~ ¶
2 DEcLARURtAL A(20,20,2), INTEGER P1 , P2, P3;
3 PRO CEDURE I N I T (H ,B);
4 DECLARE INTEGER H, B, I, 3. K , REAL XK ;

H 2O TIIEN ERROR STOP ; A
6 TV B -

~ 20 ~~~ ~~~~~~~~ ~t~~;7 ~~ FOR I =TToiT~~El tTT~(l 1= 20) THEN SUBSCRIPT RANGE ERROR;
E2 f~ —(1 ~~=

~ 2o) TH EN SUBSCRIPT RANGE ERROR ;
E3 Ii~ - (1 ‘ = 1 2) THEN SUBSCRIPT RANGE ERROR ;
8 Ati , 1 , 1) = I

—

9 DO FOR J 2 T O B;
£4 — TF~~(l = F<= 20) THEN SUBSCRIPT RANGE ERROR ;
ES TV -~(l < 3 20) Tl4~N S~WSCRIPT ~~~~ ERROR ;
E6 IF — (1 ..= 1 2) THEN SUBSCRIPT RANGE ERROR;
E7 TV ~- (l I 2O) iA iiENSU~SCR IPT RAM~E ERROR;
E8 f~ ~-(l < = 3-1 < = ~~~~~~~~~~~~~~~~~~~~~~~~~~£9 TV -~(l <= 1 = 2) T H U ~S~~I A ~~E ERROR ;
10 AfT, 3, 1) = A(I , J 1 T i T ~~~~11 END;
12 END ;
13
14 XK = 2 .0;
15 DO FOR I = 1 TO H;
16 —

D~~F0R J =T TO B;— - -~l
.
~

= r<= 20) THEN SUBSCRIPT RANGE ERROR ;
Eli TV - (1 3 20) THEN SUBSCRIPT RANGE ERROR ;
£12 IV —(I ~- = K .- = 2) ~~~~~~~~~~~~~~~~~~~El3 TV — (1 ~- = I - = ~~~~~~~~~~~~~~~~~~~~~~~~~~~El 4 TV (1 = 3 = 20) 11TE~ ~~ S~~~PT~~~N~E ~~ N;
E15 !T--(l K-i =

~~~~~~~~~~~~~~~~~~~~~~~~~~£16 IF XK = 0 THEN ZER0hIVTB~~1~~~W~17 ~II, J , K)~~~~(I~~~~~ -T) /~~~i18 END;
19 ENDI
20 ENDI
21 ~

‘
~~~EDURE LOOKUP (I , 3, K);

~~~~ 22 DECLARE INTEGER I, 3, K;
23 CASE,
24 K l :
E17 IF — (1 ~~

= I ~-
= 20) THEN SUBSCRIPT RANGE ERROR;

E18 IF -~(1 3 ~~
= 20) ~~EN �U R IPY ~Ar~c~ ERk~k;E19 IF ~-(l ~~= K ~~
= 2~ T~~N SU~~c~~~~~RkN [

~~~i~;25 P~ INT “AREA OF” I . J ” R E  ~ N~tE IS’1 (IT i. K);
26 K = 2 :
E20 IF ~—(l I s. = 201 THEN SUBSCRIPT RANGE ERROR;
E21 TV --(1 3 ~- = 20) ~T~N STThSCWIPY R1~~~ (~~~~;E22 TV -‘- (1 = K = 2) THN SUBSCRI T RANGE ERROR ;
27 TINT “AREA OF” ~~~~~~~~~~~~~~~~~~~~ J~~K);28,29 ELSE : PRINT “PARAMETER ERROR : K = “ K;
30 END;
31 END
32 CALrTNIT (20,20);
33 ~~ P FOREVER;
34 ~~~AD PT .~1’2, P3;

- ~~~ S~~~ - . - ~~ -~~~

~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~

--
- S --

-30-

35 IF P3 = 0 THEN STOP;
36 — Et~~ ~AtE LOCKUP (P1 P2, P3);
37 END;
38 END;

FIGURE 2: THE PROGRAM OF FIGURE 1 , WITH PROBES FOR ZERO-DIVIDE AND
SUBSCRI PT RANGE ERRORS INSERTED. THE PROBES SHOWN ARE THOSE
WHICH WOULD BE INSERTED BY A NAIVE DYNAMIC TEST TOOL AND
HAVE STATEMENT NUMBERS PRECEEDED BY THE LETTER “E” .

L _ _ _ _ _  . .~~~~~~~~~~~_ _ _ _  
_ _



1
/ 

A

/

PROCED1~RE AREAS ;
2 ~~~[A~E REAL A (.’O ,20,2), INTEGER P1 , P2 , P3;
3 PROCEDURE INIT (H, B);
Al ASS~~1~ NC~ SIDE-EFFECTS4 DECLARE INTEGER H , B, I, 3, K , REAL XK ;
5 IF H 2(fl~HWERROR STOP ;
6 TV B 70 THEN ERROR S~’OP;
7 ~~ FOR I 1T 0  1~~~ S A(T, 1 , 1 )  I ; -

9 DO FOR 3 .‘ TO ¶~;10 Aft , 3, 1 1 = A( I. J—l , 1) 1;
A2 ASS ERT A ( I ,  J , l~ - 1*3 ,
1 1 END;
12 END; 

-

13 ~~~~~
14 XK = 2.0;
15 DO FOR I = 1 TO H;
16 

— 

b~~FOR 3 = 1  TO B;
17 ACT , 3 K) A(I, 3, K-l) I XK ;
A3 ASSERT A(I , 3, ~

) = 0.5 * A (I , 3, 1);
18 END;
19 END ;
20 ENDr
21 P~~CEDURE LOOKUP (I , J , K);
A4 A~~ERT NO SIDE-EFFECTS ;
22 P~CLARE NT~!ITiTK ;
A5 A~SERT 1 F ~- 20;
A6 AS~~~t 1  ~- 3 20;
23 CASE; - 

-

24,25 = l~ PRINT “AREA OF” I , 3 “RECTANGLE IS” A(I , J , K);
26,27 K 2: ~ TNT “AREA OF” I, 3 “TR IANGLE IS ” A( I , 3, K);
28,29 ELSE: PRINT “PARAMETER ERROR: K = “ K;
30 END;
31
32 CALt TNIT (20,20);
33 E~~ FOREVER ;
34 READ M , P2, P3;
35 TVT3 0 THEN STOP ;
36 EtST CAtt LOOKUP (P 1 , P2 , P3 );
37 END;
38 END;

FIGURE 3: THE PROGRAM OF FIGURE 1 AS IT MIGHT BE AUGMENTED BY
ASSERTIONS CAPTURING THE INTENT OF THE CODE

~~~~~~TIT~ SS ~~~~~~~~~~~~~~~ _ _  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~



-32-

1 PROCEDURE AREAS ;
2 DECLARE REAL A(20,20,2), INTEGER P1 , P2, P3;
3 PROCE~U~~ INIT (H, B);4 DECLARE INTEGER H , B, I , 3, K, REAL XK ;
P1 ,l DECLARE INTEGER HTEMP , BTEMP ;
P1 ,2 HTEMP = H;
P1 ,3 BTEMP = B;
5 IF H -

~ 20 THEN ERROR STOP;
6 TV B > 20 THEN ERROR STOP;
7 DO FOR I 1 TO H;
8 ATT , 1 , i)~~ I;
9 DO FORJ 2 T O B;
10 A~(T, 3, l)~~~A(I , 3—1 , 1) + I
P2,1 IF A (I, 3, 1) ~‘ I * 3 THEN PRINT “ASSERTION VIOLATION AFTER
11 END; STATEMENT 10” A(I , 3, 1), I , 3;
12 END;
13 K = 2 ;
14 XK = 2.0;
15 DO FOR I = 1 TO H;
16 ~~~FOR J = T T O  B;
17 A~T, 3, K)~~~A(I, 3, K—i) / XK;
P3,1 IF A(I , 3, 2) ~ 0.5 * A(I , 3, 1) THEN PRINT “ASSERTION VIOLATION

— 

AFTER STATEMENT 17” A( I ,
3, 2), I, 3;

18 END;
19 END;
P1,4 IF i~i7 HTEMP THEN PRINT “SIDE EFFECTS VIOLATION FOR H” H, Hu MP;
P1 ,5 TV B fr BTEMP THEN PRINT “SIDE EFFECTS VIOLATION FOR B” B, BTEMP;
20 END;
21 P~~CEDURE LOOKUP (I, J, K);22 DECLARE INTEGER I , 3, K;
P4,1 DECLARE INTEGER ITEMP, JTEMP , KTEMP;
P4,2 ITEMP = I;
P4,3 JTEMP = 3;
P4,4 KTEMP = K;
P5,1 IF —( 1 <= I <=  20) THEN PRINT “ASSERTION VIOLATION AFTER STATEMENT 22” I;
P6,1 TV —(1 < =  J < =  20) W~W ~~INT “ASSERTION VIOLATION AFTER STATEMENT 22” J;23 USE;
24 ,25 K = l~ PRINT “AREA OF ” I, 3 “RECTANGLE IS” A(I, 3, K);
26,27 K = 2: PRINT “AREA OF” I , 3 “TRIANGLE IS” A(I , 3, K);
28,29 ELSE: PRINT “PARAMETER ERROR: K = “ K;
30 END;
P4 ,5 IF T~ ITEMP THEN PRINT “SIDE EFFECTS VIOLATION FOR I” I, ITEMP ;
P4,6 TV J ~ JTEMP ~~ PRINT “SIDE EFFECTS VILLATION FOR 3” 3 , JT EMP ; A

P4,7 TV K fr KTEMP 11~!1~T PRINT “SIDE EFFECTS VIOLATION FOR K” K, KTEMP ;
31 ~FiD;32 CALt TNIT (20,20);
33 LOOP FOREVER;
34 ~ READ P1 , P2 , P3;

L ~~~ _______ 
._n . . ~~~~~~~~~~~~~~~~~ —



—33-

35 IF P3 = 0 THEN STOP;
36 ~~~ ~At[ LOOKUP (P1 , P2 , P3);
37 END;
38 ENDT

FIGURE 4: THE PROGRAM OF FIGURE 1 AS IT MIGHT BE AUGMENTED BY PROBES
INSERTED BY AN ASSERTION CHECKING TOOL IN RESPONSE TO THE
ASSERTIONS SHOWN IN FIGURE 3. THE INSERTED PROBES ARE DENOTED
BY LINE NUMBERS BENNING WITH P. LINE NUMBER P1 ,3 IS ATTACHED
TO THE JTH STATEMENT GENERATED AS A RESULT OF ASSERTION Al IN
FIGURE 3. 

.-~~~~~~~~~~~~~~~~~~~~~~~~~~~_~~~~~~~~~~~~~~~~~~~~~~~~~~~ --



_ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~‘1
-34-

3,4 21 ,22

5 5 ref: h 23

6 6 ref: b ref: k 24 25 ref: i ,j,k ,A

7 ref: h ref: k 26 27 r e f :  i ,~ ,k ,A
def: i

~ ref: j 28 29 ef: k
def: A

9 ref: b 30
def: j

10 ref: i ,j,A 31

11 def: j 1 ,2

12 def: I 32

13 ,14 def: k ,xk 33

15 ref: h def: pl ,p2,p3
def: I 

,,
/r.
1

i

1 6 ref: b / ~~~~~~~~~~~~~~
def: j

17 ref: i ,j,k,xk ,A 36
def: A

18 def: j - 37

19 def: i 38

20

Figure 5

The flowgraphs of the three procedures in the example program of Fig. 1.
The nodes are numbered by the statement of Figure 1. For each node , the
program variables which are defined there and referenced there are listed .
Note that node 36 represents a procedure invocation with variables as
arguments. Thus the ref and def lists cannot be completed .

I
LI A.

L_  ~~~~~~~~~~~ ~~~~A . ... __~~..__ ~~~~~ 
.-~~~~~~~~~~~~~~

- -
~~~~~~ _ __—~. - ‘—~- 

.-. ____
~

~

- - -~~~~~~~~~~

-35-

~1)

0
0

• .v
4.J Q)

a’ 4-’.— 0.

E U
0 0 0

‘V
U

.‘- 4-’

. . - - .--

‘V
,S

~~~~~~ C
C,

-‘a)
/ I— 4-’

(I_, / ‘V
4~3

/
s_ -CD /

- 
C~~~~~

.

/ 0 U
O C ,  0 ‘ - U

~~~I4.~ 4-’
‘V

C
a’E

4-’
In 0

0

a) 0 o

~0 •~-
C 4 -)

4~) In ‘V U

4-’ 0
4-’ ‘.0 0 0

:,~~~
S.-~~.- a) 4 0 .
ow 5.. ‘V

0 0 0.C ~~ ~~~ Q)

In 1- 0 P) 4~’
C) 5- 1-

C ~~~~~
.
~~~

0 — ___ 
U. 4.~~~

4 ;—•— I C +_)

4-’ I
I 0

a)
In I 0

In 
‘V

‘V II O C

0 a)
‘4— 0

0 
In -.-

C C. a ’ >
0 In a’ C) ,-’

04-’ a) 5.. 4-’ c
4.) a) c A

‘ V a ’  . 0
‘V ~~~In

1- 0  
C ’V~~~~~I_ 

A

7I n0 00 C )
_ .-

C I n~.- .-4
0 0 )  ~‘ ‘V U I_ I/)
41 0.

-r

- - -~~~~ S — ~~~~~~~~~~~~~~ 

-

_ _ _ _



-36-

II)

~0C,

C
I I •

, C, C
I o~ L. ‘

~- ‘ .- C,

i .~~~ ~~~ ~~

‘

I -
~~~
()

C I C~~ E

~— I’~ ‘t’ ¼ ’
+ / ~~~~~~ \ _ _ _ _ _ _ _ _ _ _ _

0 -’-- ~~~~~~~4~ ~w cj
5..
4,

C
W C

~~~~ ‘-‘
C)

‘ V u )  • -
4.) a’ ¼~’•’a’C  C

4)

‘
-‘-Si , 

___ 3 ’

S.. -V

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

S..
>., a’

C 0~ 5..
C 0 ‘V

C a’ 4-’ ..- U.
~~4.)

E u) V) 0 ‘V A
•1 •l~~ 4-’ 0

In C In
4) C~~~ 4)

E 4’
C.) 4-)

‘4->~ C ¼’) 0
0 C

o

E u) ‘V >

~ —.~~~-2 C’

~ \ai ~~’

~
C
,

0 ~ C j .—
a’ 0 5 . .

C
-4

4
_ _ _

S ~~~~~~~~~~~~~~~~~~~~~~~

37~

References

[Al fo 77] M. W. Al ford , “A Requirements Enqineeririg Methodo1~ qy i~ r
Real-T ime Processin~: Requirements .’ IEEE Transactitiins on
Software Engineer in~y, SE-3 pp. 60-69 (Jan. 197fl.

[Alle 76] F . F. A l len dod 3. Coc ke, “A Program Data rlow Ana lys is
Procedure ,” CACM , 10 , pp. H7- 147 (Md rc h 1976).

[Baiz 69] ~~~. M . BaL~er , “EX DN-lS : x t ‘nd~ h1t’ ‘~~hUqq1t1q dod Mwi I t ’ r—
I nq Sy’~ tern ,” rr~c.

,~F I PS ‘)~~~ Spr I n~ Jo lo t C~mi~w I er
eoc~’ 34 AF IPS Press . Mon tvale , N. i.

[Bel l 77] T. E. Bel l, 0. C. Bixler and M. ~~. ~Dyer , “An Extendah ie
Approach to Computer-Aided Softwa -’e Requirements Engineer-
I ng, ” IEEE Trans . on Softwa re [ng.. SE-3 pp . 49-60, (Jan .
1977)

[lIlac 77] R. K. F. Black . “Ef fects of Modern Proqran,ninq Pract ice on
Software Development Costs ,” Proceeding Fall Compcon 77
pp. 250-253 (Sept. 1977).

[Boll 79] L . A. Bollacker, “Detecting Unexecutabl e Paths Through
Program Flow Graphs ,” Masters Thesis , Dept . of Comp . Sd ..
Univ. of Colorado at Boulder , 1970.

[Brow 78] 3. R. Brown , “Programming Practices for Increased Software
Qual ity,” in Software ~~~jjty Nanagement Petroce lli Books,
New York City , 1 978.

[Chea 78] T. E. Chea tham , Jr . and D. Washin gton ,” Progran~ Loop
Analys is by Solving First Order Recurrence Relations ,”
Harvard Univ. Center for Research in Computing Technology .
TR-13-78.

[Clar 761 L. A. Clarke , “A System to Generate Test Data and Symbol i-
cal ly Execute Prog rams ,” IEEE Transactions on Software
Engineerin~, SE-2 pp. 215-222 (Sept . l97~).

[Els p 72] B. Elspas , K . N. Levitt . R. 3. W alAi in ger and A. Waksman .
“An Assessment of Techniques for Proving Program Correct-
ness,” ACM con~puti n~ Surv~ys 4 pr . 97-147 (June 1972).

[Fair 75] R. F. Fairley , “An Lxperiment~1 P,’oqram Testing Facility .”
Proc . First Nationa l Conf. on Software Eng., IEEE Cat.
#75CH0992-8C pp . 47-55 (1975).

[Floy 67] R. W. Floyd . “Assi g ni nq Meanings t A ~ Proqrams ,” in Mathe—
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 19 3. T. Schwartz çed.)
Amer. 1’lath . Soc. Providence, R .I. pp. 19-32 (1967).



--‘ -~~~~- 
--- ‘ 5 - -  -~~~~~~~~~~

-38-

(Fosd 76] L. 0. Fosdick and L . J. Osterweil , “Data Flow Analysis
in Software Reliability ,” ACM Computing Surveys 8 pp.
305-330 (Sept. 1976).

(Gri s 70] R. Grishma n , “The Debugging System AIDS ,” AFIPS 1970
Spring Joint Computer Conf., 36 AFIPS Pres~~ 1~OiTtVáTe,N.J. pp. 59-64.

[Rant 76] S. L. Hantl er and J. C. King , “An Introduction to Prov inq
the Correctness of Programs ,” ACM Computinq Sj,~ve~’s~~e s 8
pp. 33 1—354 (Sept. 1976).

[Hech 75] M. L. Hecht and J. D. Ul l man , “A Simple Al gorithm for
Global Data Flow Analysis Probl ems ,” SIAM J. Computing 4
pp. 519-532 (Dec. 1975).

[Howd 78] W. E. Howden , “DISSECT - A Symbolic Evaluation and Program
Testing System,” IEEE Trans. on Software Eng., SE-4
pp. 70-73 (Jan. 1978)

[King 76] 3. C. Ki ng , “Symbolic Execution and Program Testing ,”
CACM 19 pp. 385-394 (July 1976).

(Lisk 75] 8. H. Liskov and S. N. Zilles , ‘ Specification Techniques
for Data Abst ract ions ,” IEEE Trans. on Software Eng.,
SE-i pp. 7-19 (1975). — _____________________

[Lisk 77] B. H. Liskov, A. Snyder , R. Atkinson , and C. Schaffert ,
“Abstraction Mechanisms in CLU ,” CACM 20 pp. 564-576
(Aug. 1977).

[Land 75] R. L. London, “A View of Program Verification ,” 1975 Inter-
national Conf. on Reliabl e Software, IEEE Cat. #75-CH0940-
7CSR pp. 534-545 (1975).

(Miii 74) E. F. Miller , Jr., “RXVP , Fortran Automated Verification
System,” Program Validation Project, Genera l Research
Corp., Santa Barbara , Calif. (Oct. 1 974).

[Oste 76) L. 3. Osterweil and L. D. Fosdick , “DAVE - A Validation ,
Error Detection, and Documentation System for FORTRAN
Programs,” Software - Practice and Experience 6 pp. 473-

— 

486 (Sept. 1976).

[Oste 77] L. 3. Osterweil . “The Detection of Unexecutabl e Program
Paths Through Static Data Fl ow Analysis ,” Proceedings
COMPSAC 77. IEEE Cat. #77CH1 291..4C, pp. 406-413 (1977).

[Pam 72) 0. L. Parnas , “On the Cri teria to be Used in Decomposing
Systems into Modules ,” CACM 15 , pp . 1053—1058 (Dec. 1972).

tRama 75] C. V. Ramamoorthy and S.-B. F. Ho. “Testing Large Software
With Automated Software Evaluation Systems,” IEEE Transac-
tions on Software Engjneering SE-i pp. 46-58 (March 1975). 



-39-

(Reif 75] 0. J. Re i fer, “Automated Aids for Reziabl e Software,”
Proc . 1975 International Conference on Reliabl e Software
IEEE Cat. #75-CH0940-7CSR pp. l3i-l4~? (April 1975).

[Ross 77] 0. T. Ross and K. E. Schoman , Jr., “Structured Analysis
for Requirement Definition ,” IEEE Trans. on Software
Engineering SE-3 pp. 6-15 (Jan. 1977).

[Scha 73) M. Schaeffer, A Mathematical Theory of Global Program
Optimization , Prentice-Hall , Engi ewood Cl i ffs, N.e. 1973.

[Step 78] S. A. Stephens and L. L. Tripp, “A Requirements Expres-
sion and Validation Tool ,” Proc. 3rd International Conf.
on Software Eng., Atlanta , (May 1 978).

[Stuc 75] 1. C. Stucki and G. L. Foshee, “New Assertion Concepts
in Self-Metric Software,” Proceedings 1975 International
Conference on Reliabl e Software, IEEE Cat. #75-CH0940-7CSR
pp. 59-71 .

[Tayl 79] R. N. Taylor and L. 3. Osterweil , “Anomaly Detection in
Concurrent Process Software by Static Data Fl ow Analysis ,”
Univ. of Colorado at Boulder , Dept. of Comp. Sd ., Tec h .
Rpt. #CU-CS—152-79 (April 1979).

[Te ic 77] D. Te ichroew and E. A. Hershey III, “PSL/PSA: A Computer-
Aided Technique for Structured Documentation and Analysis
of Information Processing Systeris~” IEEE Transac tion on
Software Engineering SE-3 pp. 41-48 (Jan. 1977).

~~~~~~~~~~~~~~~~

‘

_ _ _ _ _ _ _ _
_ _ _ _ _ _ _

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ r —  ~~~~~~~~~~~~~~~~~~


